IF-TU-59

Smoothing Gate Capacitance Mddels for CMOS Radio Frequency
and Microwave Integrated Circuits CAD

Josef Dobes§

Czech Technical University, Technicka 2, 16627 Praha 6, Czech Republic

Abstract — Convergence problems for both voltage- and
charge-controlled models of MOSFET gate capacitances are
often a limiting factor of CAD tools. In paper, an idea of
exponential smoothing of model discontinuities is proposed.
The method is demonstrated by smoothing the discontinuity
of Meyer’s model at zero drain-source voltage. The updated
model is tested on flip-flop circuit by an advanced algorithm.

I. INTRODUCTION

The gate capacitance models have been defined precise-
ly concerning gate-source voltage. However, models need
a refinement for a case of large drain-source variation — it
will be demonstrated on a CMOS flip-flop circuit analysis
by author’s C.I.A. (Circuit Interactive Analyzer) program.

II. DEFINITION OF A NECESSITY TO ENSURE CONVERGENCE

The SPICE3 program has implemented Meyer’s voltage
controlled model, the programs of PSPICE family contain
the same model and Ward’s charge controlled model in se-
veral levels, especially for BSIM class. In most cases, the
models have not problems relative to gate-source voltage
changes. However, if drain-source voltage exchanges sign
during transient analysis, convergence problems can occur.
Such problems are described in [2, p. 197] for the Meyer’s
model and in [2, p. 198] for the Ward’s models. For that
reason, a requirement for an updated model can be defined
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for the Meyer’s and Ward’s model, respectively.

II1. DEFINITION OF DISCONTINUITIES OF CLASSICAL MODEL

The discontinuity problem can well be defined on classi-
cal Meyer’s model that is discussed in a simple form in [1]
and in a quite complete form in {2]. However, the actial
implementation in the SPICE program slightly differs from
[2]. Hence, let define the updated model in a complete way
with the discontinuities to be under consideration. The de-
finition for normal mode (Vg > 0) is divided to 5 regions:

e for Vgg — V,u < —¢s (accumulation region):
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e for 0 < Vg — V,n < Vpg (saturation region):
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e for Vog — Vo > Vpg (linear region):
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V,, voltage is part of static model and acts as a boundary
between regions of the weak and strong inversions, ¢g is
the surface inversion potential, and C, is determined by
oxide permittivity and thickness, effective channel length
and channel width—see Fig. 1:
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Fig. 1. Updated Meyer’s gate capacitance model in C,, units.

We can now easily check that Meyer’s modified model
defined in (3) to (8) is continuous relative to gate-source
voltage. However, if drain-source voltage is changing sign
whereas the gate-source voltage remains unchanged then a
discontinuity might arise. For a lucid example, suppose the
gate-source voltage fulfills the condition for the saturation
region (6), i.e. 0 < Vgg — V,; < Vg —the discontinuities
now arise for both source and drain gate capacitances

. RT _2
vplslglm Cos = vl,lsl-lilo- Cop = 3 Coxs ©
Volsﬂjlo_ Cos = volsl—mm ,Caop =0 (10

because the role of Cgg and Cgpy exchanges for Vg <0
in the SPICE models. In other words, it is natural to expect

Jim,Ces = JimeCoo (D)

for symmetrical device and that condition is not kept—(6).
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Fig. 2.  Simplified schema of probed fraction of a large CMOS

integrated circuit.

IV. SOLVING THE PROBLEM BY EXPONENTIAL SMOOTHING

. The problem of discontinuities (9) to (11) can easily be
resolved by means of the exponential factor

Vbs

for Vpg 20 (12)
nsmoothVT) DS

Fg = exp(—
and

) for VDS < 0, (13)
Tsmooth ¥ T

where 7., IS @ new model parameter with unit defauit
value and V7 is thermal voltage. For all the Czg and Cgp
capacitances in (3) to (7), new ones are defined by

Cas +C
Clg = Fp =88 ——GD 5 GD + (1-F;)Cqs, (14)

Cgq + C,
CéD=FG_qS—2_m')'+(l_FG)CGD (15)

— for symmetrical devices, again. Note that the Cgp
capacitance has not that discontinuity problem and there-
fore is left without any changes (Cgg = Cg)-

In other words, the Cgg and Cgyp, capacitances have the
equal values for Vg — 0 (which must be physical reality
for symmetrical devices) now and the original unmodified
values for [Vpg| > V.

It is also evident that the 50/50 dividing used in (14) and
(15) can be generalized for other ratio of gate-source and
gaté-drain capacitances. Moreover, the analog smoothing
method is usable for three partitionings of Ward’s model.

V. TEST OF THE DISCONTINUITY EXPONENTIAL SMOOTHING

A radio frequency CMOS flip-flop circuit has appeared
as a sophisticated test of convergence. Only a part in Fig. 2
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Fig. 3. The CMOS flip-flop circuit used as a sophisticated test of convergence —the numbers represent the SPICE “area” factors.
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Fig. 4. The CMOS negative-or circuit that processes output of
the two flip-flop circuits.

from the whole integrated circuit is necessary for testing.
That circuit has caused serious convergence problems in
SPICE analyses because it contains the transistors which
alternate the sign of drain-source voltage during transient
simulation. Hence, the analyses were tried by C.1.A. kernel.

A. About the Probed CMOS Subcircuits

The subcircuits are drawn in Fig. 3 and Fig. 4. Each of
the transistors is labeled by SPICE area factor. Threshold
voltages and other parameters of static model are determi-
ned for all the transistors from a technology parameter set.

Gate capacitors are defined by the equations (3) to (8)
for the classical model and by updates (12) to (15) for the
smoothed model —both are determined by (8) with oxide
thickness 50 nm and several parameters of the static model
modifying the voltage V,, and effective channel length.

The capacitance part of model is complemented by three
(slight) gate overlap capacitors and— of course— by junc-
tion capacitors with zero-bias bottom capacitances 0.2 pF
and zero-bias perimeter capacitances 0.05 pF.

B. About the C.IA. Integration Algorithm

There is a derivation in [2] that some integration scheme
(trapezoidal here) in conjunction with Meyer’s model cau-
ses incorrect results for circuits with isolated nodes. There-
fore, an algorithm choice for solving the circuit system

F(z(t),(t),t) =0 (16)
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TABLE I

‘CONTRAST OF CLASSICAL AND SMOOTHED MODEL CLAIMS
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Fig. 5. Results of the test circuit— the first flip-flop circuit is
switched by clock signal, the second is switched by the first one.

is also important for successful implementation of a model.
A brief review of the C.I.A. algorithm is also necessary to
explain advantages of the new model assessing its claims.
The C.IA. algorithm uses backward scaled differences
as an extrapolation (predictor) or interpolation (corrector)
tool—they are defined for an n step by recursive formulae

: ) 60, = 2, an
§0z, =0 g, —al s Ve, i=1,... k42,

where @, = x(t,,), k, is an order of polynomial interpola-
tion in the running integration step and

a® =1,

i 18
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A prediction of values for a next chosen time ., mffgl is
determined by the extrapolation using the differences (17)

2, = 300,69, a9

i=0

which is a more convenient form of Newton interpolation
polynomial used here in an explicit form.

A correction of the values for ¢, is determined using
modified Newton iterations (limited in each of the integra-
tion steps by the algorithm’s parameter “maxit™)

n+l

9 () ) ) '
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n+l

with the factor 7,,, is to be derived from an implicit form
of approximation of derivatives, which gives the formula
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but if an indication of divergence during the iterations (20)
is detected then the logarithmic damping can be used
9 '

80l = siga( ") |2 1n 1+——‘| @3)

for all the m components of Aac(] )1 before using the (22).
C. About the Results With Classical and Smoothed Models

The TABLE I summarizes main differences between the
analyses of the test circuit by the algorithm of subsection
B. As expected and got by SPICE analyses too, the result
by using classical models shows several nonconvergences
— here, for 200 MHz clock signal with 250 ps rise and fall
times, 5 nonconvergences occurred even for maxit = 200,

Moreover, the convergence problems cause a number of
logarithmic dampings (23) to be used for classical model
and (which is the worst) a quantity of LU factorizations of
the Jacobian in (20) to be executed is considerably higher.

VI. CONCLUSION

The exponential smoothing for discontinuity elimination
usable for both Meyer’s and Ward’s gate capacity model is
suggested and tested on a sophisticated CMOS RFIC.
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